APPENDIX D

Log Inactivation Information and Tables for Free Chlorine, Chlorine Dioxide, Ozone and Ultraviolet (UV) Light

D1 CT_{required}

CT_{required} can be determined by the following methods:

- From CT disinfection tables first published by USEPA; or
- Calculated from equation (for Giardia only).

D1.1 Reading CT_{required} from US EPA Disinfection Tables:

CT values can be read from the tables, which follow in the appendix, using the following parameters:

- Required log reduction;
- Minimum temperature of the water;
- Maximum pH of the water; and
- Free chlorine residual concentration before first consumer (when using free chlorine).

Note that tables are specific to target organism (*Giardia*, *Cryptosporidium*, viruses) and type of disinfectant (free chlorine, chlorine dioxide, ozone, UV).

Since water treatment facilities rarely operate at pH, temperature and chlorine concentrations that exactly match the values listed in the CT tables, CT_{Required} must be determined by one of the following methods:

- Linear interpolation method;
- Approximation method.

D1.1.1 Linear Interpolation Method

Linear interpolation method may have to be used several times to find intermediate values for chlorine, temperature and pH (see example 2 in Appendix F).

Because of the complexity of this process, the approximation method is frequently used to find CT_{required}.

D1.1.2 The Approximation Method

With the approximation method, conservative values for pH, temperature, and residual disinfectant concentration are used to select a CT value from the table. It is a conservative method that slightly underestimates the actual effectiveness of the disinfection process. However, it requires no mathematical calculations and therefore is simpler and reduces errors.

To find the CT_{required} from the tables using the approximation method:

- Find the CT table for the temperature that is equal or (next) lower to the actual measured water temperature. For example, if the measured water temperature is 7°C use a table for 5°C.
- Go to the section of the table for the pH which is equal to or (next) higher than the actual measured pH of the water. For example, if the measured pH is 6.3, use the pH 6.5 section.
- Use the free chlorine concentration that is equal or (next) higher than the actual concentration measured at the plant. For example, if the measured free chlorine concentration is 1.5 mg/L, use the 1.6 mg/L row.

For example, find the CT_{required} for the 0.5 log inactivation credit for *Giardia* and thefollowing water parameters:

- temperature = 7°C;
- pH =6.7;
- free chlorine = 1.7 mg/L.

Since there is no table for 7° C, we should select the table with the next lower temperature, which in this case is a table for 5° C. This table contains pH values 6.5 and pH 7.0. Since our measured value is 6.7, we choose the next higher value, that is pH 7. Finally looking at free chlorine concentration, we see that table contains values for concentrations 1.6 mg/L and 1.8 mg/L. With a measured value of 1.7 mg/L, we use the next higher value, in this case 1.8 mg/L. Using this process, the CT_{required} would be 27.

CT log inactivation tables have been provided in this appendix to facilitate thecalculation of CT_{required} via the linear interpolation or approximation method.

D2 Calculating CT_{required} from Equation (for Giardia Only)

The following equation, developed by Martin (1993), is most often used in disinfection calculations for *Giardia*.

 $CTrequired = 0.2828 * pH^{2.69} * Cl^{0.15} * (log reduction) * 0.933^{temp-5}$

Where :

- CT: Required inactivation number
- pH: Measure of the acidity or basicity
- CI: Free chlorine concentration

Log reduction: Required logarithmic reduction in Giardia

Temp: Water temperature

Please note this equation does not apply to *Cryptosporidium* which is not inactivated by chlorine. See the log inactivation tables for alternate disinfectants for *Cryptosporidium* inactivation.

The following table compares $CT_{required}$ as determined by the approximation method and the Martin equation for two scenarios.

Log Reduction Required	Temperature (°C)	рН	Chlorine Residual (mg/L)	Approximation Method ¹	Martin
0.5	0.5	6	0.8	24	23.15
0.5	0.5	7	1.4	37	38.12

Notes:

1. Values taken from the CT tables

Free Chlorine			pl	l ≤ 6					рН	= 6.5					рН	= 7.0					рH	= 7.5		
Concentration		Lo	g Ina	activa	tion			L	og Ina	activa	tion			L	og Ina	ctiva	ion			Lo	g Ina	ctivati	ion	
mg/L	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3
≤0.4	23	46	69	91	114	137	27	54	82	109	136	163	33	65	98	130	163	195	40	79	119	158	198	237
0.6	24	47	71	94	118	141	28	56	84	112	140	168	33	67	100	133	167	200	40	80	120	159	199	239
0.8	24	48	73	97	121	145	29	57	86	115	143	172	34	68	103	137	171	205	41	82	123	164	205	246
1	25	49	74	99	123	148	29	59	88	117	147	176	35	70	105	140	175	210	42	84	127	169	211	253
1.2	25	51	76	101	127	152	30	60	90	120	150	180	36	72	108	143	179	215	43	86	130	173	216	259
1.4	26	52	78	103	129	155	31	61	92	123	153	184	37	74	111	147	184	221	44	89	133	177	222	266
1.6	26	52	79	105	131	157	32	63	95	126	158	189	38	75	113	151	188	226	46	91	137	182	228	273
1.8	27	54	81	108	135	162	32	64	97	129	161	193	39	77	116	154	193	231	47	93	140	186	233	279
2	28	55	83	110	138	165	33	66	99	131	164	197	39	79	118	157	197	236	48	95	143	191	238	286
2.2	28	56	85	113	141	169	34	67	101	134	168	201	40	81	121	161	202	242	50	99	149	198	248	297
2.4	29	57	86	115	143	172	34	68	103	137	171	205	41	82	124	165	206	247	50	99	149	199	248	298
2.6	29	58	88	117	146	175	35	70	105	139	174	209	42	84	126	168	210	252	51	101	152	203	253	304
2.8	30	59	89	119	148	178	36	71	107	142	178	213	43	86	129	171	214	257	52	103	155	207	258	310
3	30	60	91	121	151	181	36	72	109	145	181	217	44	87	131	1/4	218	261	53	105	158	211	263	316
Free Chlorine			рН	= 8.0)				рН	= 8.5					рН	l <u>≤</u> 9.0								
Concentration		Lo	g Ina	activa	tion			L	og Ina	activa	tion			L	og Ina	ictivat	ion							
mg/L	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3						
≤0.4	46	92	139	185	231	277	55	110	165	219	274	329	65	130	195	260	325	390						
0.6	48	95	143	191	238	286	57	114	171	228	285	342	68	136	204	271	339	407						
0.8	49	98	148	197	246	295	59	118	177	236	295	354	70	141	211	281	352	422						
1	51	101	152	203	253	304	61	122	183	243	304	365	73	146	219	291	364	437						
1.2	52	104	157	209	261	313	63	125	188	251	313	376	75	150	226	301	376	451						
1.4	54	107	161	214	268	321	65	129	194	258	323	387	77	155	232	309	387	464						
1.6	55	110	165	219	274	329	66	132	199	265	331	397	80	159	239	318	398	477						
1.8	56	113	169	225	282	338	68	136	204	271	339	407	82	163	245	326	408	489						
2	58	115	173	231	288	346	70	139	209	278	348	417	83	167	250	333	417	500						
		110	177	225	204	353	71	142	213	284	355	426	85	170	256	341	426	511						
2.2	59	118	1//	255	294	555																		
2.2 2.4	59 60	120	181	235	294 301	361	73	145	218	290	363	435	87	174	261	348	435	522						
2.2 2.4 2.6	59 60 61	120 123	177 181 184	235 241 245	294 301 307	361 368	73 74	145 148	218 222	290 296	363 370	435 444	87 89	174 178	261 267	348 355	435 444	522 533						
2.2 2.4 2.6 2.8	59 60 61 63	120 123 125	181 184 188	235 241 245 250	294 301 307 313	361 368 375	73 74 75	145 148 151	218 222 226	290 296 301	363 370 377	435 444 452	87 89 91	174 178 181	261 267 272	348 355 362	435 444 453	522 533 543						

CT Log Inactivation Values for Giardia using Free Chlorine at 0.5°C

CT units = min⋅mg/L

CT Log Inactivation Values for *Giardia* using Free Chlorine at 5°C

Free Chlorine			pł	<mark>- </mark> ≤ 6					рH	= 6.5					pН	= 7.0					pН	= 7.5		
Concentration		Lo	g Ina	ctiva	tion			L	og Ina	activa	tion			L	og Ina	ctivat	tion			Lo	g Ina	ctivati	ion	
mg/L	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3
≤ 0.4	16	32	49	65	81	97	20	39	59	78	98	117	23	46	70	93	116	139	28	55	83	111	138	166
0.6	17	33	50	67	83	100	20	40	60	80	100	120	24	48	72	95	119	143	29	57	86	114	143	171
0.8	17	34	52	69	86	103	20	41	61	81	102	122	24	49	73	97	122	146	29	58	88	117	146	175
1	18	35	53	70	88	105	21	42	63	83	104	125	25	50	75	99	124	149	30	60	90	119	149	179
1.2	18	36	54	71	89	107	21	42	64	85	106	127	25	51	76	101	127	152	31	61	92	122	153	183
1.4	18	36	55	73	91	109	22	43	65	87	108	130	26	52	78	103	129	155	31	62	94	125	156	187
1.6	19	37	56	74	93	111	22	44	66	88	110	132	26	53	79	105	132	158	32	64	96	128	160	192
1.8	19	38	57	76	95	114	23	45	68	90	113	135	27	54	81	108	135	162	33	65	98	131	163	196
2	19	39	58	77	97	116	23	46	69	92	115	138	28	55	83	110	138	165	33	67	100	133	167	200
2.2	20	39	59	79	98	118	23	47	70	93	117	140	28	56	85	113	141	169	34	68	102	136	170	204
2.4	20	40	60	80	100	120	24	48	72	95	119	143	29	57	86	115	143	172	35	70	105	139	174	209
2.6	20	41	61	81	102	122	24	49	73	97	122	146	29	58	88	117	146	175	36	71	107	142	178	213
2.8	21	41	62	83	103	124	25	49	74	99	123	148	30	59	89	119	148	178	36	72	109	145	181	217
3	21	42	63	84	105	126	25	50	76	101	126	151	30	61	91	121	152	182	37	74	111	147	184	221
Free Chlorine			рН	= 8.0					pН	= 8.5					рН	≤9.0								
Concentration		Lo	g Ina	ctiva	tion			L	og Ina	activa	tion			L	og Ina	ctivat	tion							
mg/L	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3						
≤ 0.4	33	66	99	132	165	198	39	79	118	157	197	236	47	93	140	186	233	279						
0.6	34	68	102	136	170	204	41	81	122	163	203	244	49	97	146	194	243	291						
0.8	35	70	105	140	175	210	42	84	126	168	210	252	50	100	151	201	251	301						
1	36	72	108	144	180	216	43	87	130	173	217	260	52	104	156	208	260	312						
1.2	37	74	111	147	184	221	45	89	134	178	223	267	53	107	160	213	267	320						
1.4	38	76	114	151	189	227	46	91	137	183	228	274	55	110	165	219	274	329						
1.6	39	77	116	155	193	232	47	94	141	187	234	281	56	112	169	225	281	337						
1.8	40	79	119	159	198	238	48	96	144	191	239	287	58	115	173	230	288	345						
2	41	81	122	162	203	243	49	98	147	196	245	294	59	118	177	235	294	353						
2.2	41	83	124	165	207	248	50	100	150	200	250	300	60	120	181	241	301	361						
2.4	42	84	127	169	211	253	51	102	153	204	255	306	61	123	184	245	307	368						
2.6	43	86	129	172	215	258	52	104	156	208	260	312	63	125	188	250	313	375						
2.8	44	88	132	175	219	263	53	106	159	212	265	318	64	127	191	255	318	382						
3	45	89	134	179	223	268	54	108	162	216	270	324	65	130	195	259	324	389						

CT units = min⋅mg/L

CT Log Inactivation Values for Giardia using Free Chlorine at 10°C

Free Chlorine			pl	H ≤ 6					pН	= 6.5	,				pН	= 7.0					pН	= 7.5		
Concentration		Lo	g Ina	activa	tion			L	.og Ina	activa	tion			L	og Ina	ctiva	tion			L	og Ina	ctiva	tion	
mg/L	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3
< 0.4	12	24	37	49	61	73	15	29	44	59	73	88	17	35	52	69	87	104	21	42	63	83	104	125
0.6	13	25	38	50	63	75	15	30	45	60	75	90	18	36	54	71	89	107	21	43	64	85	107	128
0.8	13	26	39	52	65	78	15	31	46	61	77	92	18	37	55	73	92	110	22	44	66	87	109	131
1	13	26	40	53	66	79	16	31	47	63	78	94	19	37	56	75	93	112	22	45	67	89	112	134
1.2	13	27	40	53	67	80	16	32	48	63	79	95	19	38	57	76	95	114	23	46	69	91	114	137
1.4	14	27	41	55	68	82	16	33	49	65	82	98	19	39	58	77	97	116	23	47	70	93	117	140
1.6	14	28	42	55	69	83	17	33	50	66	83	99	20	40	60	79	99	119	24	48	72	96	120	144
1.8	14	29	43	57	72	86	17	34	51	67	84	101	20	41	61	81	102	122	25	49	74	98	123	147
2	15	29	44	58	73	87	17	35	52	69	87	104	21	41	62	83	103	124	25	50	75	100	125	150
2.2	15	30	45	59	74	89	18	35	53	70	88	105	21	42	64	85	106	127	26	51	77	102	128	153
2.4	15	30	45	60	75	90	18	36	54	71	89	107	22	43	65	86	108	129	26	52	79	105	131	157
2.6	15	31	46	61	77	92	18	37	55	73	92	110	22	44	66	87	109	131	27	53	80	107	133	160
2.8	16	31	47	62	78	93	19	37	56	74	93	111	22	45	67	89	112	134	27	54	82	109	136	163
3	16	32	48	63	79	95	19	38	57	75	94	113	23	46	69	91	114	137	28	55	83	111	138	166
Free Chlorine			рН	= 8.0)				рН	= 8.5					pН	≤9.0								
Concentration		Lo	g Ina	activa	ation			L	.og Ina	activa	tion			L	og Ina	octiva	tion							
mg/L	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3						
≤ 0.4	25	50	75	99	124	149	30	59	89	118	148	177	35	70	105	139	174	209	1					
0.6	26	51	77	102	128	153	31	61	92	122	153	183	36	73	109	145	182	218						
0.8	26	53	79	105	132	158	32	63	95	126	158	189	38	75	113	151	188	226						
1	27	54	81	108	135	162	33	65	98	130	163	195	39	78	117	156	195	234						
1.2	28	55	83	111	138	166	33	67	100	133	167	200	40	80	120	160	200	240						
1.4	28	57	85	113	142	170	34	69	103	137	172	206	41	82	124	165	206	247						
1.6	29	58	87	116	145	174	35	70	106	141	176	211	42	84	127	169	211	253						
1.8	30	60	90	119	149	179	36	72	108	143	179	215	43	86	130	173	216	259						
2	30	61	91	121	152	182	37	74	111	147	184	221	44	88	133	177	221	265						
2.2	31	62	93	124	155	186	38	75	113	150	188	225	45	90	136	181	226	271						
2.4	32	63	95	127	158	190	38	77	115	153	192	230	46	92	138	184	230	276						
2.6	32	65	97	129	162	194	39	78	117	156	195	234	47	94	141	187	234	281						
2.8	33	66	99	131	164	197	40	80	120	159	199	239	48	96	144	191	239	287						
3	34	67	101	134	168	201	41	81	122	162	203	243	49	97	146	195	243	292						

CT units = min⋅mg/L

CT Log Inactivation Values for Giardia using Free Chlorine at 15°C

Eree Chlorine	5		pł	l ≤ 6					рH	l = 6.5					рH	= 7.0					pH =	= 7.5		a de la compañía de l Teorem de la compañía
Concentration		Lo	g Ina	ctiva	tion			L	og Ina	activa	tion			L	og Ina	ctivat	tion			Lo	g Inad	tivati	ion	
mg/L	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3
≤ 0.4	8	16	25	33	41	49	10	20	30	39	49	59	12	23	35	47	58	70	14	28	42	55	69	83
0.6	8	17	25	33	42	50	10	20	30	40	50	60	12	24	36	48	60	72	14	29	43	57	72	86
0.8	9	17	26	35	43	52	10	20	31	41	51	61	12	24	37	49	61	73	15	29	44	59	73	88
1	9	18	27	35	44	53	11	21	32	42	53	63	13	25	38	50	63	75	15	30	45	60	75	90
1.2	9	18	27	36	45	54	11	21	32	43	53	64	13	25	38	51	63	76	15	31	46	61	77	92
1.4	9	18	28	37	46	55	11	22	33	43	54	65	13	26	39	52	65	78	16	31	47	63	78	94
1.6	10	19	28	37	47	56	11	22	33	44	55	66	13	26	40	53	66	79	16	32	48	64	80	96
1.8	10	19	29	38	48	57	11	23	34	45	57	68	14	27	41	54	68	81	16	33	49	65	82	98
2	10	19	29	39	48	58	12	23	35	46	58	69	14	28	42	55	69	83	17	33	50	67	83	100
2.2	10	20	30	39	49	59	12	23	35	47	58	70	14	28	43	57	71	85	17	34	51	68	85	102
2.4	10	20	30	40	50	60	12	24	36	48	60	72	14	29	43	57	72	86	18	35	53	70	88	105
2.6	10	20	31	41	51	61	12	24	37	49	61	73	15	29	44	59	73	88	18	36	54	71	89	107
2.8	10	21	31	41	52	62	12	25	37	49	62	74	15	30	45	59	74	89	18	36	55	73	91	109
3	11	21	32	42	53	63	13	25	38	51	63	76	15	30	46	61	76	91	19	37	56	74	93	111
Free Chlorine			рН	= 8.0					рН	= 8.5					рH	≤9.0								
Concentration		Lo	g Ina	ctiva	tion			L	og Ina	activa	tion			L	og Ina	ctivat	tion							
mg/L	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3						
≤ 0.4	17	33	50	66	83	99	20	39	59	79	98	118	23	47	70	93	117	140	1					
0.6	17	34	51	68	85	102	20	41	61	81	102	122	24	49	73	97	122	146						
0.8	18	35	53	70	88	105	21	42	63	84	105	126	25	50	76	101	126	151						
1	18	36	54	72	90	108	22	43	65	87	108	130	26	52	78	104	130	156						
1.2	19	37	56	74	93	111	22	45	67	89	112	134	27	53	80	107	133	160						
1.4	19	38	57	76	95	114	23	46	69	91	114	137	28	55	83	110	138	165						
1.6	19	39	58	77	97	116	24	47	71	94	118	141	28	56	85	113	141	169						
1.8	20	40	60	79	99	119	24	48	72	96	120	144	29	58	87	115	144	173						
2	20	41	61	81	102	122	25	49	74	98	123	147	30	59	89	118	148	177						
2.2	21	41	62	83	103	124	25	50	75	100	125	150	30	60	91	121	151	181						
2.4	21	42	64	85	106	127	26	51	77	102	128	153	31	61	92	123	153	184						
2.6	22	43	65	86	108	129	26	52	78	104	130	156	31	63	94	125	157	188						
2.8	22	44	66	88	110	132	27	53	80	106	133	159	32	64	96	127	159	<mark>191</mark>						
3	22	45	67	89	112	134	27	54	81	108	135	162	33	65	98	130	163	195						

CT units = min·mg/L

CT Log Inactivation Values for Giardia using Free Chlorine at 20°C

Free Chlorine			pł	l≤6					pН	= 6.5					pН	= 7.0					pH :	= 7.5		
Concentration		Lo	g Ina	ctiva	tion			L	og Ina	activa	tion			L	og Ina	ctiva	tion			Lo	g Ina	ctivat	ion	
mg/L	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3
≤ 0.4	6	12	18	24	30	36	7	15	22	29	37	44	9	17	26	35	43	52	10	21	31	41	52	62
0.6	6	13	19	25	32	38	8	15	23	30	38	45	9	18	27	36	45	54	11	21	32	43	53	64
0.8	7	13	20	26	33	39	8	15	23	31	38	46	9	18	28	37	46	55	11	22	33	44	55	66
1	7	13	20	26	33	39	8	16	24	31	39	47	9	19	28	37	47	56	11	22	34	45	56	67
1.2	7	13	20	27	33	40	8	16	24	32	40	48	10	19	29	38	48	57	12	23	35	46	58	69
1.4	7	14	21	27	34	41	8	16	25	33	41	49	10	19	29	39	48	58	12	23	35	47	58	70
1.6	7	14	21	28	35	42	8	17	25	33	42	50	10	20	30	39	49	59	12	24	36	48	60	72
1.8	7	14	22	29	36	43	9	17	26	34	43	51	10	20	31	41	51	61	12	25	37	49	62	74
2	7	15	22	29	37	44	9	17	26	35	43	52	10	21	31	41	52	62	13	25	38	50	63	75
2.2	7	15	22	29	37	44	9	18	27	35	44	53	11	21	32	42	53	63	13	26	39	51	64	77
2.4	8	15	23	30	38	45	9	18	27	36	45	54	11	22	33	43	54	65	13	26	39	52	65	78
2.6	8	15	23	31	38	46	9	18	28	37	46	55	11	22	33	44	55	66	13	27	40	53	67	80
2.8	8	16	24	31	39	47	9	19	28	37	47	56	11	22	34	45	56	67	14	27	41	54	68	81
3	8	16	24	31	39	47	10	19	29	38	48	57	11	23	34	45	57	68	14	28	42	55	69	83
Free Chlorine			рН	= 8.0)				рН	= 8.5					рН	≤ 9.0								
Concentration		Lo	g Ina	octiva	ation			L	og Ina	activa	tion			L	og Ina	octiva	tion							
mg/L	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3						
≤ 0.4	12	25	37	49	62	74	15	30	45	59	74	89	18	35	53	70	88	105						
0.6	13	26	39	51	64	77	15	31	46	61	77	92	18	36	55	73	91	109						
0.8	13	26	40	53	66	79	16	32	48	63	79	95	19	38	57	75	94	113						
1	14	27	41	54	68	81	16	33	49	65	82	98	20	39	59	78	98	117						
1.2	14	28	42	55	69	83	17	33	50	67	83	100	20	40	60	80	100	120						
1.4	14	28	43	57	71	85	17	34	52	69	86	103	21	41	62	82	103	123						
1.6	15	29	44	58	73	87	18	35	53	70	88	105	21	42	63	84	105	126						
1.8	15	30	45	59	74	89	18	36	54	72	90	108	22	43	65	86	108	129						
2	15	30	46	61	76	91	18	37	55	73	92	110	22	44	66	88	110	132						
2.2	16	31	47	62	78	93	19	38	57	75	94	113	23	45	68	90	113	135						
2.4	16	32	48	63	79	95	19	38	58	77	96	115	23	46	69	92	115	138						
2.0	16	32	49	65	81	97	20	39	59	78	98	117	24	47	71	94	118	141						
2.6	10	52	1.5	00	01	57																		
2.6	17	33	50	66	83	99	20	40	60	79	99	119	24	48	72	95	119	143						

CT units = min⋅mg/L

CT Log Inactivation Values for Giardia using Free Chlorine at 25°C

En oblasia			pł	<mark>- </mark> ≤ 6					pН	= 6.5					pН	= 7.0					pH :	= 7.5		
Concentration		Lo	g Ina	activa	ation			L	og Ina	activa	tion			L	og Ina	ctiva	tion			Lo	g Ina	tivat	ion	
mg/L	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3
≤ 0.4	4	8	12	16	20	24	5	10	15	19	24	29	6	12	18	23	29	35	7	14	21	28	35	42
0.6	4	8	13	17	21	25	5	10	15	20	25	30	6	12	18	24	30	36	7	14	22	29	36	43
0.8	4	9	13	17	22	26	5	10	16	21	26	31	6	12	19	25	31	37	7	15	22	29	37	44
1	4	9	13	17	22	26	5	10	16	21	26	31	6	12	19	25	31	37	8	15	23	30	38	45
1.2	5	9	14	18	23	27	5	11	16	21	27	32	6	13	19	25	32	38	8	15	23	31	38	46
1.4	5	9	14	18	23	27	6	11	17	22	28	33	7	13	20	26	33	39	8	16	24	31	39	47
1.6	5	9	14	19	23	28	6	11	17	22	28	33	7	13	20	27	33	40	8	16	24	32	40	48
1.8	5	10	15	19	24	29	6	11	17	23	28	34	7	14	21	27	34	41	8	16	25	33	41	49
2	5	10	15	19	24	29	6	12	18	23	29	35	7	14	21	27	34	41	8	17	25	33	42	50
2.2	5	10	15	20	25	30	6	12	18	23	29	35	7	14	21	28	35	42	9	17	26	34	43	51
2.4	5	10	15	20	25	30	6	12	18	24	30	36	7	14	22	29	36	43	9	17	26	35	43	52
2.6	5	10	16	21	26	31	6	12	19	25	31	37	7	15	22	29	37	44	9	18	27	35	44	53
2.8	5	10	16	21	26	31	6	12	19	25	31	37	8	15	23	30	38	45	9	18	27	36	45	54
3	5	11	16	21	27	32	6	13	19	25	32	38	8	15	23	31	38	46	9	18	28	37	46	55
Free Chlorine			рH	= 8.0)				рН	= 8.5					рН	≤ 9.0								
Concentration		Lo	g Ina	activa	ation			L	og Ina	activa	tion			L	og Ina	ctivat	tion							
mg/L	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3						
< 0.4	8	17	25	33	42 •	50	10	20	30	39	49	59	12	23	35	47	58	70	1					
0.6	9	17	26	34	43	51	10	20	31	41	51	61	12	24	37	49	61	73						
0.8	9	18	27	35	44	53	11	21	32	42	53	63	13	25	38	50	63	75						
1	9	18	27	36	45	54	11	22	33	43	54	65	13	26	39	52	65	78						
1.2	9	18	28	37	46	55	11	22	34	45	56	67	13	27	40	53	67	80						
1.4	10	19	29	38	48	57	12	23	35	46	58	69	14	27	41	55	68	82						
1.6	10	19	29	39	48	58	12	23	35	47	58	70	14	28	42	56	70	84						
1.8	10	20	30	40	50	60	12	24	36	48	60	72	14	29	43	57	72	86						
2	10	20	31	41	51	61	12	25	37	49	62	74	15	29	44	59	73	88						
2.2	10	21	31	41	52	62	13	25	38	50	63	75	15	30	45	60	75	90						
2.4	11	21	32	42	53	63	13	26	39	51	64	77	15	31	46	61	77	92						
2.6	11	22	33	43	54	65	13	26	39	52	65	78	16	31	47	63	78	94						
2.8	11	22	33	44	55	66	13	27	40	53	67	80	16	32	48	64	80	96						
3	11	22	34	45	56	67	14	27	41	54	68	81	16	32	49	65	81	97						

CT units = min⋅mg/L

CT Values for Inactivation of Viruses by Free Chlorine

			Log In	activation		
Temperature (°C)		2		3		4
		рН		рН		рН
	6 to 9	10	6 to 9	10	6 to 9	10
0.5	6	45	9	66	12	90
5	4	30	6	44	8	60
10	3	22	4	33	6	45
15	2	15	3	22	4	30
20	1	11	2	16	3	22
25	1	7	1	11	2	15

CT units = min⋅mg/L

Source: USEPA (1991) Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources.

CT Log Inactivation Values for Cryptosporidium using Chlorine Dioxide

Log					Wat	ter Temperatur	re (°C)				
mactivation	0.5	1	2	3	5	7	10	15	20	25	30
0.25	159	152	139	128	107	90	69	45	29	19	12
0.50	318	304	279	256	215	180	139	90	58	37	24
1.00	636	609	558	511	429	361	278	179	116	75	48
1.50	954	913	837	767	644	541	416	269	174	112	73
2.00	1271	1217	1115	1022	859	721	555	359	232	150	97
2.50	1589	1521	1394	1278	1073	901	694	449	290	187	121
3.00	1907	1826	1673	1533	1288	1082	833	538	348	225	145

CT units = min⋅mg/L

Source: (2006) Code of Federal Regulations, 40 CFR 141.720.

Log			Water Tem	perature (°C)		
inactivation	<1	5	10	15	20	25
0.50	10	4	4	3	3	2
1.00	21	9	8	6	5	4
1.50	32	13	12	10	8	6
2.00	42	17	15	13	10	7
2.50	52	22	19	16	13	9
3.00	63	26	23	19	15	11

CT Log Inactivation Values for Giardia using Chlorine Dioxide

CT Log Inactivation Values of Viruses using Chlorine Dioxide, pH 6-9

Log			Tempera	ture (°C)		
Inactivation	≤ 1	5	10	15	20	25
2	8.4	5.6	4.2	2.8	2.1	1.4
3	25.6	17.1	12.8	8.6	6.4	4.3
4	50.1	33.4	25.1	16.7	12.5	8.4

CT units = min⋅mg/L

CT Log Inactivation Values for Cryptosporidium using Ozone

Log					Temper	ature (°	C)			
Inactivation	≤0.5	1	2	3	5	7	10	15	20	25
0.5	12	12	10	9.5	7.9	6.5	4.9	3.1	2.0	1.2
1.0	24	23	21	19	16	13	9.9	6.2	3.9	2.5
1.5	36	35	31	29	24	20	15	9.3	5.9	3.7
2.0	48	46	42	38	32	26	20	12	7.8	4.9
2.5	60	58	52	48	40	33	25	16	9.8	6.2
3.0	72	69	63	57	47	39	30	19	12	7.4

CT units = min⋅mg/L

Source: (2006) Code of Federal Regulations, 40 CFR 141.720.

CT Log Inactivation Values for Giardia using Ozone

Log	Temperature (°C)						
Inactivation	≤1	5	10	15	20	25	
0.5	0.48	0.32	0.23	0.16	0.12	0.08	
1.0	0.97	0.63	0.48	0.32	0.24	0.16	
1.5	1.5	0.95	0.72	0.48	0.36	0.24	
2.0	1.9	1.3	0.95	0.63	0.48	0.32	
2.5	2.4	1.6	1.2	0.79	0.6	0.4	
3.0	2.9	1.9	1.43	0.95	0.72	0.48	

.

-

CT units = min⋅mg/L

.

CT Inactivation Values for Viruses using Ozone

Log	Temperature (°C)						
Inactivation	≤1	5	10	15	20	25	
2	0.9	0.6	0.5	0.3	0.25	0.15	
3	1.4	0.9	0.8	0.5	0.4	0.25	
4	1.8	1.2	1	0.6	0.5	0.3	

CT units = min⋅mg/L

Source: USEPA (1991) Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources.

UV Dose Log Inactivation Values for Cryptosporidium, Giardia, and Viruses

Log Inactivation	Cryptosporidium	Giardia	Viruses*
0.5	1.6	1.5	39
1.0	2.5	2.1	58
1.5	3.9	3.0	79
2.0	5.8	5.2	100
2.5	8.5	7.7	121
3.0	12	11	143
3.5	15	15	163
4.0	22	22	186

* Based on adenovirus inactivation.

Source (2006) Code of Federal Regulations, 40 CFR 141.720